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Section 1. 0

INTR ODUC TION

Recent improvements in computer technology and numerical

analysis methods have led to significant advances in structural analysis

capability. Computer programs are now available for analysis of the

static behavior (linear or nonlinear) of almost any shell of revolution P'ib-'

jected to axisymmetric loading. For nonsymmetrical loading or for shells

of general shape, a static analysis is readily performed provided that the
response is linear. This capabiE.ty is substantiated in Reference 1. How-

ever, nonlinear effects are frequently important in shells. Because t. fse

structures are thin, collapse or loss of stability is generally the critical

mode of failure. Thicker shells are often subjected to loads of such mag-

nitude that material nonlinearities become important. Reliable and depend-

able computational systems for this important class of problems have not

been developed, although there are computer codes available for some

special. cases.

Several years ago, a research program was initiated at Lockheed

with the goal of developing a computational system for such nonlinear

problems. This program has resulted in the STAGS (STructural Analysis

of General Shells) computer code for analysis of the static nonlinear re-

sponse of general shells. STAGS is based on a theory in which the shell

surface is subdivided, by means of a finite difference grid work, into a

set of subareas. The strain energy density for each subarea is then ex-

pressed in terms of displacement components and their derivatives. After

the derivatives have been replaced by their finite difference equivalents,

the energy can be calculated and, together with the potential energy due

to applied loads, summed over the shell surface. The total potential

energy expression of the shell so obtained is then minimized according to

familiar energy principles and a system of nonlinear algebraic equations

-1--



in the unknown displacements results. These equations are solved by a

Newton-Raphson technique.

STAGS is an outgrowth of work on the buckling of cylindrical

panels with nonuniform membrane stresses that was initiat ,d at LMSC

in 1963 under the sponsorship of NASA Marshall Space Flight Center

(Ref. 2). The basic nonlinear computer program for cylindrical shells

with cutouts (Ref. 3) and a linear version including analysis of free vibra-

tions (Ref. 4) were developed under the LMSC Independent Research Pro-

"gram. Under contract with the Naval Ship Research and Development

Center (NSRDC), the linear version of the code was developed to inclade

shells of revolution with smooth but otherwise arbitrary cutouts (Ref. 5).

The work reported here extends the nonlinear version to shells of

more general shapes with cutouts of arbitrary contour. In addition, inelas-

tic deformations and a capability to handle a finite difference grid with

variable nodal point spacing have been added. In a parallel ef'fort funded

by Lockheed's Independent Research Program, the equations were further

generalized to include nonorthogonal coordinates (Ref. 6). As this work

was completed before the end of the contract period, it was possible to

include the more general equations in this report.

Further expansion of the STrAGS program has been accomplished

under parallel research studies funded by the Air Force Space and Missile

Systems Organization (SAMSO) and by the NASA Langley Research Center.

During the now completed SAMSO study, provisions were made in the

STAGS code to allow both the temperature and material proF -ýrties to vary

over the surface and through the thickness of the shell. In addition, a

bifurcation buckling branch was added., Parameter studies were made to

evaluate the applicability of the bifurcation buckling approach to reentry

vehicle analysis (Ref. 7). Although most of unse extensions were made

primarily to render STAGS suitable for reentry vehicle analysis, they have

considerably enhance,2 the overall capability of the code.,

The NASA study is currently ii- )rogreq;. Under this study, STAGS

is being developed to handle segm, ite( nd branched shells, and to t"eat

I -



realistic types of shell wall constructions including those which involve

anisotropic materials. Finite difference expressions based on non-

rectangular grids r-nd an autcomatic grid generator are also being added.

A time integraticn scheme will be developed and included in STAGS.

This will permit the solution of dynamic response 3nd dynamic buckling

problems. The NASA work is scheduled for completion by the summer of

1972.

A STAGS user's manual that documents all of the modifications

completed to date has been prepared (Ref. 8).

F



Section 2. 0

STAGS THEORY

In the application of finite difference techniques to shell analysis,

it has been customary to assume that lines of curvettre constitute the

surface coordinate lines ,rhich form the finite difference mesh. This

assumption results in orthogonal coordinate lines and leads to simple

shell equations; however, there is a serious disadvantage to this apprcach

in that in many instances shell boundaries do rot lie along lines of curva-

ture. When- this occurs, boundary conditions cmn be approximated at best,

and then only with the introduction of extreme mathematical complexities.

For this reason, it is advantageous LO formulate the shell theory in terms

of generalized coordinates so that boundaries coincide with particulai

coordinate lines.

This section presents the generalized theory upon which the STAGS

computer code is based. Although no attempt is mad,. to be exhaustive

hi the coverage of the basic shell theory, a brief description of the funda-

mental aspects is giver.. For additional material, the reader is re.ferr d

to Reference 9. In addition, methods for computing the shell middle sur-

face input parameters are presented.

2.1 Metric of the Shell Middle Surface

I Z
Consider a surface in space, described by coordinates cp and 2p

which is embedded in a three dimensional Euclidean space defined by the

Cartesian coordinates, x , x , and x , as showr, in Figure 1. The

vector r to any point on the surface can be writtei, as

" " x X±+x k2 r x k(3

i--x

~4-
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where the k. are unit vectors in the x" directions, respectively. Now

consider the differential

1- 3-dF = dxI k +dxk+dx k.

= clx iT.

11

and define this expression for dr in terms of the shell coordinates cp

and cp2 b

dr a 1 dcp+ a dy~S= a of° (3)

The dCP~

The quantities al , a2 are called the covariant base vecto.rs and -an be

ywritten as

1= -6+7 2 a 3 3

(4)

It should be noted that, in general, the base vectors ia are not unit

aa

vectors bu,. have magnitudes given by

(5)

The expression for incremental arc length on the shell middle surface is

ds dr. dr

or



= a 1 1.d.P.. .d y 1 + 2 a 1 2 d d d ( P I .. . .+ a 2 d T. .d cp 2

j (6)

=ja, dcp' dtpo

' The quantities aoCV are called the components of the covarir, nt metric

, tensor, and are defined by

a, a, (7)ff p

Two alternate forms of Eo. (6) are

2 211 1 2 22 2
ds = A dq dq + 2 C d(p dc• + B dcp d(

Sds 2  ý 2 dI d 1 + 2A B cos 8do dyd2 + B 2 d o2 d o2

Both of these formulations have been used in the STAGS User's Manuals;

the quantities A, B, C, and e are related to the components of the metric

tensor by

AB - ,

(8)
C A B cos -- a12

Cos a 12i cs e: 4all a 22

It can be seen from Eqs.. t, . 7, 8) that A and B are ,neisure'- L Lc'eI2

length along the coordinate lines y and c• and that e Is ure angle between

these lines.

i ~--
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Since the covariant base vectors a , - are not necessarilynormal to one another, it ig sometimes convenient to consider a set of
vectors defined by

-1-

a = - a. x a
A 3

(9)

-. - a3 x a1/a

where a is the unit normal vector as shown in Figure I and a is the
3-determinant of the metric tensor

a 3  a - a xa2

(10)
a acr all a ., - a 12

The vectors defined by Eqs. (9) are called contravariant base vectors
and have the properties

-1 -a a1

-.2
a a2  1

- 1 (i i)a a a2 =0

-2 -
a a1 = 0

or

a a r(12)
a

8 is the Kir -ker deita and has the prope,-tieqaf



The contravaria-nt metric tensor components are defined by

a a-*a (14)

which can be written in tesms of a as

11 a 2 2
a = a

22 all1
a - a (1 5)

12 a12a

With the aid of Eqs. (10 through 15), Eqs, (9) can be written in the form

a = a (16)

2. 2 Curvature Tensor of the Shell Middle Sur.ace

The curvature and twist of a surface are defined by the curvature

and torsion of lines embedded in the surface relative to the urn, -ormal vec-

tor. For instance, the normal curvatures of a surface with respecL to the
1 2

coordinate lines cp and y are defined by

bnl b I a3
2 2 3

i1t I' I -I ! II I
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and cp , respectively. These vectors can be written as

1~ a7
a)

where ds and ds 2 are given by

dsI = /a-,, dqol

ds 2 = V-22 d cp

Hence, the normal curvatures of the shell middle surface are

(17)

d 2

bnr2 72 a (3
Va -, d cp (;

The twist of a surface with respect to a coordinate line is the tor-

sion of the coordinate line wi,.h the sign chosen such that a positive twist

occurs when the normal vector a3 rotates about one coordinate line towards

the other coordinate line. This leads to the definitions for twist of a surface

da3 -2
b - a

V-,, d p 4-2 2
(18)

da3 -1
b 1 3 a

'22 d a



,1 9

The curvature tensor of a surface is defined by

b - a- (19)

This is a symmetric tenso'- whose indices are raised and lowered accord-

ing to

b = b ap = bop a

b bp a (20)bof CV PO

bao= b' ap
P

The components of b are related to the changes in normal curvature

and twist by

b
b = ct (c not summed)

-(21)

bo

bta = a, ,• # •; , 0 not summed)
Faa a•

It can be seen with the aid of Eqs. (10, 15, 20) that, for orthogonal coordi-

nates (a 1 2 = 0), bti = bt 2  .

Two invariants associated with the curvature are the mean rarva-

ture H and the Gaussian curvature K

H 1 b C1
H -(

(22)

K - ( bb - b• b

-ii-



2. 3 Displacements and Derivatives

The displacement vector of a point on the shell middle surface is

defined by

u a U + wa 3  (23a)

The quantities ua are called the contravariant components of in-plane

displacement. An alternate form of (23a) is

u = u a1 + wa'3  (23b)

* where the u are the covariant components of in-plane displacement.
a,Since a3 is a unit vector and normal to a and a , there is no dis-

a,
tinction between covariance and contravariance for w . From Eq. (16)

it can be seen that u and u are related by

U = u•

(24)

ua = a e u

The covariant and contravariant displacem'.Lit components can be

related to physical quantities. Consider the disp! ce- ent vector written

in terms of unit covariant vectors

a a.u :u - + v - + w a3  (5

11 22

The quantities u and v represent the physiral components of in-plane

displacement in the directions defincd by thu c:ovariant base vectors a1

and a, , respectively. Equating Eqs. (Z. to Eq. (25 with help froin

Eqs. (7, 14, 16) yie/ds



(26)

and

1 u
U -

(27)

2 v

by The partial derivative of the covariant base vectors are defined
by

= a _+ b -- 128)S•Q p crb 3

The b a term can be deduced from E,-. (19). It to"lows from Eq. (1,"

that F can be written as

rP :aP : -

The partial derivatives of the contravariant base vectors can be deduced

from Eq. (28, 29) as

: •g -
JI a' q- bs -a (30)

The qu1antitievs -ire Christoffel symrbols of .sec ond kind. Svimrbols



of the first kind are defined by lowering the upper index

rI p r a * a (31)r o1C Xp • p

These quantities expressed in terms of the partial derivatives of ac

are

2i ap + -a a a ao (32)-- • pcp acP
co

With the aid of Eqs. (28, 30), tbe ?artial derivative of the displace-

ment vector u [Eq. (22, 23)] can be written as

+_t

_ - i + g3 - bw•- + -a

(33)
- a• + b u 3 - blwa + - a3

a a

The quantities upIa and uoIa are called the covariant derivatives of

11u and up with respect to Cpa and are given by

UOI B0u r u

(34)
•u

_ P + rO uP

The concept of covariant differentiation can be extended to second order

tensors such as b

-14 -



bBIp -• rX b Fx bXCIO PP av "p ox op bax

(35)

Ibol + r bp r b

a bcpPX 0 pot X

The quantities appearing in Eqs. (33) can be regrouped to define the dis-

placement gradients yI and Oa

U.1 - b w
(36)

S =+ b u
CYa( a 0

Hence, the derivatives of _U take the form

YoU a + .Oc a 3 (37)

2. 4 Deformation

The deformation of the shell middle surface can be specified in

terms of the changes in the metric and curvature tensors. With the de-

formed state of the shell characterized by a tilda ( a £ ) , the

strain and curvature-change tensors can be defined by

2 a a

(38)

0 0= _

a



It can be seen with the aid of Eqs. (6, 13, ZZ) that these definitions lead

directly to the changes in incremental arc length and mean curvature

d• 2 - dsZ 2e a p d dpd

(39)
H K' - i '

2 a

Although e £ and P. a are independent of any particular metric tensor,

it is convenient to refer these quantities to the metric of the undeformed

middle surface; i. e. , in operations expressing, for instance, covariant

strain or curvature-change tensors in terms of contravariant tenrors (or

vice versa) ace and a L are used rather than az and aL - For
ex?-mple,

€•= 6 a J
C a

(40)

Uý 01

In addition to strain and curvatuce-change, portions of the shell middle

surface may undergo finite rctations. If such is the case, the expressions

for e and ; , when written in terms of the displacement gradients,

must reflect this. Since the general expressions for c ,nd >t are

extreirely complicated, it is d( sirable to use simpler, approximate expres-

sions whenever possible.

The rotation of any part of the shell middle surface can be split

t a ý is not gonerrlly ,yi-rtric; therefore, its indices must be moved straight

up and down only. The dot appearing over the, a assures this., Note that a

dot in the terms _-, a £), 1S not required since p a , hence, for

-y,'ml et -Ic tes o s , 11o distinction in the. ordering of i:dice, 1iz r'Cqiul' rd,



into two parts. an out-of -plane rotation or "tilt" and an in-plane rotation

commonly called the "rotation aboat the normal. 11 When the angle of tilt

(02) is moderate, the tilt and in-plane rotation (w) can be approximated by

sin

*The expressions for C V and Ce used in STAGS are

_ - ( + + 1 +
-V N2 OC zc' 2 a pc 0 2a

(42)

= + bp b

These approximations are based upon the assumptions that the tilt can be

moderately large (Q <. 3) and that the in-plane rotation is of the same

order of magnitude as the square root of a typical middle surface strain

(w 'V 0 ,) ). A complete derivation of the above is given in Reference 9.

Physical components of strain and curvature-change for lines of curvature

coordinates are given in Section 2. 9.

2. 5 Strain Erergy

The strain energy density for thin elastic shells is

S E (1-v) a p a X a a ea3 t CpX+ t O X ýX
1 + v a~1 [t

(43)

For shell coordinates • and 1 and with the use of Eqs. (8, 15), Eq. (43)



can be cast in the form

S( -4 2 4A cos e -4(A sin B (A sin) c

+ 2 [l-(1-v) sin e] (AB sin 8)? e6 C1 + 2 (AB sin 8) [(l-v) + (l+v) cos ) cG

4B A 8 -B sin 8)- 4 e61¶ 6TI] + (B sin 0)- 4 2

(44)

Ss i 2 4A cos B q)-4n g"
S+ (A sin )- (Asin

+2 [1-(i-v) sin 0)]-Z (AB sine)h + 2 (AB sinZe) [(l-N,) cos~e] 9R

-4B cos e (B sin 0)-4 K+ (B s 2
,A tB sin 8) sin )-

where D and K are the membrane and bending stiffnesses, resoqctivl,,-.

D = Et

I -
(45)

Et
3

I2(l - V )

The covariant components of strain and curvature-,:hange expressed

in terms of the displacement gradients are

18 -



Yu+ + %aa\ •1 (

Vg, + + 'Yg g Y + y ( +46

=~ Y ~~ +

=I -m - + b'ym -b q 1

+ +t b .

r r. +~I b -g *Y 4- b~ m Y

-b~y~ -(47)

b °b

+ - bgl t Y.• I bql] ?,'11

where the commas denote partial differentiation. The displacement gradients

written as functions of the physical components of displacement u and v are

(see Eqs. (8, 26, 27, 34, 36))

1 1
= w + - b u + I b v

(48)

S + b u + -b

A B



Y = Ai,• + A/B (A, -B, tcos 8) v+Acos Ov,b,-b w

Au', + RAcos 0),-B, v v+A os Bv, 1•-b w

, = [(B cos e), -A,1 ] u+Bcos 8eu,t+Bv,• -b w

"ym]= B/A (B,• -A, cos 0) u + B cos 0 u, + B v, 0- w

I/A u, + [(cos 0/(AB sin 20)] [A, - (B cos 9), u] u

[1/(AB sin 2 )] [A, - cos OB, v - b§ w (49)

. = I/A u, + [I/(A2 sin 0)][(A cos 0), T - B, v]

+ [cos 0/(A2 sin2) )] [A, cos 0 - B, ] u -b w

2 21. I/B v, + [1/(B sin P)J [(Bcos B), - A,,ij u

+ [cos 0/(B sin e)] [B, cos - A, 0 v -bý w

y I/B v, + [cos e/(AB sin2 0)] [B, (A cos D) ] v

+ [i/(AB sn 2O)] [13B, - c os OA, , u - bw

I;-20



and the Christoffel symbols are (Eqs. (8, 32))

Y = [BA,• + (AA, 1 -C, )cos 0]/(AB sin e)

"E= C, -BA, §cos 0 - AA, / (BL sin -{)

F -= [A, - B, cos 0]/(A sin ) (50)

- [B, - A, cos ]/(B sine2 )

r = [C, BB, -AB, cos 0]/(A2 sin 2 )

11 = [AB, + (BB, - C,-) cos ej/(AB sin 2 0)

Substitution of Eqs. (48-50) into Eqs. (46, 47) yields the covariant

strain and curvature-change tensors as functions of the physical displace-

ment components u , v , and w. These equations are then substituted

into Eq. (44) to obtain the strain energy as a function of the displacements.

The effects of geometric imperfections have been accounted for

by modifying Eqs. (46) to include small values of an initial normal dis-

placement ýv . The terms v, N•,'w and V B+, were

added to the three middle surface strain E' , I C and , respectively.

Geometric imperfections are important because the critical loads

of many shells are sensitive to such imperfections. In addition, there are

many cases where there exist planes of symmetry with respect to loading

and geometry. In such cases, antimetric deformations will only be found

if they are "triggered" by the inclusion of antimetric geometric imper-

fections.

ii



2. 6 Solution Procedure

The solution procedure used in STAGS is based on the principal of

stationary potential energy. After the expression for strain energy den-

sity is formed, as explained in the previous section, the displacements

and their derivatives are replaced by *appropriate finite diflerence

expressions. (A set of finite difference expressions for grids with

variable spacing is described in Section 3. 0.) The strain energy density

at mesh station i is then written in the form

DZ* (51)

iýi

where Y) is a 6 x 6 matrix of constants and Zi is the vector of strains and

ccrvature changes at station i . (In this report all vectors are understood

to be column vectocs and * desig.iates the adjoint operator. Thus, Zi*

is a row vector.) The ,matrix Di is obtained by integration through the

shell wall and is a function of the geometric parameters of the shell and

of the material properties. The strain vector Zi is a nonlinear (quadratic)
function of the displacement unknowns and the geometric parameters. The

vector of stress resultants at station i is given by

Si = DZi Z (52)

The total strain energy of the shell is then

U = L Ui a (53)
i

i .th
where a is the area of the i mesh subregion. The potential energy of
the, work done by external forces, W , may be expressed in discrete formn

by

W = X-,- F (54)
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where F is the vector of external forces. As the strain expressions

are of second order in the displacement components, the total potential

energy, V , of the shell is a polynomial of 4th degree in the discrete

displacement unknowns. It is given by

V = U-W (55)

A necessary condition for static equilibrium is that the potential energy be

stationary. For a polynomial, this requires that the gradient of V vanishes

and leads to the equation

LN = F (56)

Here L is defined as the nonlinear operator such that

LX = Grad U (57)

The derivation of the complete nonlinear solution of Eq. (56) as well as of

bifurcation buckling is facilitated by introduction of the concept of the

derivative L' of L (Ref. 10). In particular, for the operator L , the deri-

vative L' (sometimes called the Frechet derivative of L) is an n-by-n

matrix whose elements are

S2U
L!.= 6U (58)

113 j (i) x (j)

Because L' is a function of a particular displacement vector X (unless

the nonlinear terms are dropped), the Frechet derivative will usually be

denoted L' to indicate this dependence. With the use of the derivative

L' of the operator L , Newtor's method may be readily generalized to

obtain the solution of Eq. (56), The. iteration is defined by

LK (X - E'-LX (59)x k+1 k k



If X0 is an estimate sufficiently close to the solution X and if it is

not a singular matrix, the iteration converges to X. Under these assump-

tions, it also can be shown that the converged solution is unique (Ref. 10).

2.7 Bifurcation Buckling

The application of Newton's method and the modified Newton method

in STAGS to obtain a nonlinear collapse analysis is discussed in the pre-

vious section. ft is interesting to note that the mathematical characteriza-

tion of bifurcation buckling also is provided by the generalized Newton

method. Let X be a solution of Eq. (56) under a given vector F of

external forces. If every neighborhood of X contains another vector Y

which satisfies the equation

LY = F (60)

then bifurcation is said to occur for the shell under the load F. From the

previous remarks on the conditions for convergence of Newton's method to

a unique solution, it follows that a necessary condition for bifurcation is

that Lk be a singular matrix, or

det (LAO) = 0 (61)

Classical bifurcation buckling theory (with linear prebuckling analysiE) may

be easily obtained from Eq. (61). It is assumed that X0 may be written

X0 L (62)

where XL is the linear solution for a lo;:d vector FL ' Thus, Eq. (61)

becemnes

det (L~ (63)
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Equation (63) is an algebraic eigenvalue problem of the form

det (A- XB- X C) = 0 (64)

In classical bifurcation theory, the C matrix, which arises from the pre-
buckling rotations, is often omitted and the eigenvalue problem

AX = )3BX (65)

is obtained.

When bifurcation is considered but the prebuckling displacements

are not linear, the solution of Eq. (61) generally requires a stepwise pro-

cedure. One such method is given by the recurrence equations

det = 0

"(66)

x k+1 = k+l Xk

in which the starting vector X may be represented by the linear solution.

A sequence of eigenvalue problems is solved and, if the method is

successful, Xk approaches unity. A nonlinear bifurcation treatment [equiva-

lent to Eq. (66)] was presented in Reference 11 and has been used successfully

to study a large variety of problems. Ycr the two-dimensional problems

under consideration here, it appears that such methods may be as costly as

the complete nonlinear analysis available in STAGS. C3onseqaently, only a

classical bifurcation buckling analysis is implemented in the STAGS pro-

gram.

The formation of the A and B matrices of Eq. (65) will be con-

sidere. briefly. The e'ements of the Frechet derivative matrix LkiX
I L

(which define the riatrices A and B) are determimed according to Eq. (58).

The rule. for computing derivatives of polynomials arc easily programmed,



and the formation of the A and B matrices, therefore, is well suited to

a:.tomatic treat.-nent on the computer. Thu.i, for example, if X and

X (it are the ith and jth displacement components, we have, using Eqs.

(52), (53), and (54):

2m 2 -k
a- a k BL (67)

.- :. k= 1

Examining the kth term of this sum,

2 LIk 2 kk k kLUk . •Zk) ,.1k (68)
X X(i) X() _X X J) a" MXa

In the first term on the right-hand side of Eq. (68), note that Sk is the

Hinear stress resultant vector z.t station k and that only the quadratic

terms (rotations) need be considered in forming the partial derivatives

6 z.k* /aX M ýX 0) ' Contributio, s from this term go into the B matrix.
Assuming the prebuckling rotati.ns may be neglec:ed for the classical

theory, the last term of Eq. (68) generates additions only to the A matrix.

The A matrix is then identical to the linear stiffness matrix. If the pre-

buckling rotations are included (nonlinear bifurcation), the last term of

Eq. (68) generates a C matrix and provides additional contributions to the

B matrix. In this case, the prebucklirng stress resultant vector S would

ali;o include nonlinear terms.

In conclusion, it shoulk. be noted that bifurcation buckling theory is

often based on the concept of adjacent equilibrium states. Of course, the

same algebraic eigenvaiue problem is ultimately obtained by both methods.

However, the approach presented here seems to provide a more simple

recipe for definition of the basic matrices of Eq. (65). The recipe is out-

lined in Eqs. (67) and (68) and leads to straightforward algebraic procedures.

bi addition, the relations between linear and nonlinear bifurcation theory

and Newton's method are. clarif-,d.



2.8 Computation of the Components of the Metric and Curvature Tensors

The components of the metric tensor A, B, C and of the curvature

tensor b , can be computed according to the following sequence of opera-

tions:

1 2 31) Denote the cartesian coordinates x , x , x by x, y, z

respectively, and the surface coordinates T , T by T, T. The x , y

z are then determined as functions of t and ii•

x = x (§ , TO

y = y (t, T") (69)

z = z (z, T')

2) The metric tensor components are computed with the aid of Eqs. (4, 7)

2 2 2

, )• + 4)+

6 2 2 2
B(a-- + + k- ) (70)

G A o x ax + LY •.z az

3) The components of the curvatulre tensor are

b2x 6 2v a2 z
k1 + :_--Z k2 + k-

'21

21 2 k31 52 k12

2 2
b,- + z (71

b 7ZT 23 _7 • 31 -.. klC O C

"fI



where

kjZ - k-T

kiz

31/a

k Tx

a = aa - a

Since the sign of the curvature tensor was chosen so that positive

curvature results from an inward point unit normal [see Eq. (19)] , care
must be taken co preserve the sense of b by remembering that it is
defined by the cross product a x a

As an example, consider the case of an elliptic cone as shown in

Figure 2. The parameters c and 0 are the tangents of the cone half apex

angles in the x-z and y-z planes, respectively, t is the elliptic coordinate,

and fl is the axial coordinate. The relationships between x, y, z and

1, are

x = ceT• cos

y = •1] sin (73)

zT=

Note that this choice of ý and f results in an outward pointing normal as

shown in Figure 2.

The a and b are computed from Eqs. (70, 71)

2 2 2 2 2
a = = (a sin + cos +
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a•, = CVZ 2 sin § cos

2 2 2 2al1 = a' cos sf a- sin g

1 1b =- -Ta •] (74)

b =0

b =0

2 2 2 z 2 22a (a sin + 0cose +a )

2. 9 Physical Components of Strain and Curvature-Change

Fo- lines of curvature coordinates, the physical components of

strain and curvature-change are given by

(a = e (no sum)

(75)

a

With the components of the metric and curvature tensors written as

1 .171

r a

r 22

I- r -



The physical components of the displacement gradients (Eq. (36)) take the

form

1 l, 2 w
Y(() -71" •1), 1 cyY' u(2) r,

1 '2, 1
Y(12) - 0 u(1),2 ?- a'l z (2)

(77)

~1 12(1)2Y(?1) - I (2),1 alCV? u(I)

"Y(2 2) - oz u(2), 2 +ri •i2 u(1)-r

V1 r I

w + I u

(2) Z w2 r2 (2)

where a comma denotes partial differentiation and the quantities u (a) are

the physical components of displacement in the (pC! directions.

The physical components of strain and curvature-change are deter-

mined from Eqs. (42) and are found to be

1 2 1 2 12
6(11) = "Y(i) i 2 Tl) ++) + T 8(1)

(12) 2 (,(12) "(21)) 7 'Y(11) Y(12) T "1(21' Y(2 2 ) + 2 '(1) (2)

(78)
1 2 + 2 ] 1•(22) = ':' + Y (l) + -7 (" 2 12)

L



-~ K 1,

(79)

11 ' 1 1.I
Ka 2 2 ~1

(2 2) a2  ) 2 + (~2 ,1) r2 Y(11)

01 111 '



Section 3. 0

FINITE DIFFERENCE GRID WITH VARIABLE SPACING

For better economy in the analysis a capability has been provided

for the use of variable ,spacing finite difference grids. The shell surface

is covered with a system of mesh lines (see Fig. 3) wvhose coordinates

are given by

x. , i1l, mi

and

yj , j~l, n

where x and y are the curvilinear surface coordinates. Corresponding

to each pair of values (i, j) i = 1, m;' j = 1, n, a rectangular region R I-

is defined with sides of length

Ka ai,j = I/,- -xi+I xi-_

b.. = 1/2 IYj+l - yj_lI

Note that R. . is rectangular on the map of the shell provided by the surface

coordin.tes but not generally on the shell itself.

The regions R. (and lengths a. . , b.i ) are modified at bounda-Thirgin Ri,3 L.Jbi

ries of a shell by including only those portions which are nsid,2 the panel.

A double integcal of a function f over the region R of the panel may then

be approximated by
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ff fdxdy = fi, j a1, j b, j (80)

R i=l j=l

The discretizatior. is completed when the integrand functions f.,

are evaluated at the centroids o- the regions R , j in terms of the neighbor-

ing displacement components. It should first be noted that t.he tangential

displacement; u and v have been located at corners of the regions R.. •

Furthermore, the energy expressions for a shell include derivatives of u

and v only up to the first order. Hence, even with arbitrary spacing, only

central difference formulas for the u and v displacements are required.

In contrast, the normal displacement w has been located at the mesh node

points (x, , y.) and more general finite difference formulas must be developed.

The coordinates of the centroid .o a region Ri, j are given by

x. = 1/4 + 2x. + xi+l

(.31)
y . /- (y. 2y

j 1/4 j- 2yj + Yj+)

Variable spacing is first considered with respect to a single coordinate x

only. With the help of a Taylor's expansion (or equivalently by the use of

interpolation formulas), the difference formulas for w , w, and w,

at x. may be established as
I

(w)i = w wi_1/16 - [(h-k) . (3k+h)/(h + hk)]

+ w 1./16 v [(h+3k). (3h+k)/(h+k)] (82)

+ w%+i/16 • [(k-h). (3h+k)/(hk+k
2 )]



(W,x) M Wx -w_(h)
x.

+ wi [1/(2h) - 1/(2k)] (83)

+ Wi+l/(Zk)

(W, Wxx, wi ,Y/[h (h+k)]

1.

- w. Z/(h. k) (84)

+ w 2+ / 2![k. (h+k)]

where

h = x. -

(85)
k - xi+1 -x.(

The correspond{ig formulas for the y coordinate are obtained by

appropriate substitutions and are denoted with superscripts

(w)j

(w, y)j (86)

(w, ) w
yy yy Y

The requred two d.ii. nsiona, differec, fof-lo mu., art,, now obtained
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by combining the formulas for both coordinate directions

wi W Y Ji

WX~lj•W, (( =W, Xi

i' j)

(87)

W~Y. aW, Wy

WXYi j W, = ((w, ))XY (- , 3i) -Y)

In general, these equations involve the 9 point "star" of neighboring values.

However, it is easily seen that all of the formulas reduce to the standard

central difference formulas when uniform rectangular spacing is used. All

of the difference formulas are exact when the displacement function w

behaves quadratically

The inclusion of nonorthogonal coordinates and of variable grid

spacing extends considerably the class of cases that can be solved by

use of STAGS. The grid lines can be made to follow boundary lines and

cutout edges rather than lines of curvature on the shell surface. As an

example, for a cylinder Nuith a circular cutout, one can use a grid as

shown in Figure 4. This gricd system is described by the mapping

function

f(x) a(1-x) + ERxS~M

g(x) b(I-x×) + Lx

2 1-)-x

I' T 7-% 0o

fsinl 0I7:
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X = R sin- -Fcos OIR"
(88)

Y = R cos "F cos /IR:

Z = Fsin0

However, it was found that use of this grid leads to inaccurate results

unless ihe spacing between the straight gridlines are very close together

in the neighborhood of the corner. The reason for this is that the equations

for the strains are inaccurate if the angle bet..-eer. the coordinates changes

significantly between two adjacent gridpoints. It appears to be more

practical, until other finite difference expressions have been developed,

to use a different approach. For shells with cutouts that cannot easily be

made to follow a regular net, it is suggested that the user written subrou-

tine for a variable thickness shell be used. T'!. sh•il thickness i3 set

equal to zero if a gridpoint falls inside the cutout. The computer program

then eliminates as unknowns th- displacement components at points with

zero thickness. This methol is demonstrated in the example given in

Secti3n 5. 3.

I2



Section 4. 0
JNELASTIC BEHAVIOR

4.1 Introduction

Due to the extreme complexity of the problem, it has been necessary

to formulate theories of plasticity which greatly simplify material behavior.

While in many cases these theories give satisfactory results, thei, ! are

other cases in which they fail. It is shown, for instance, in Reference 12

that for loading histories with sharp turns in the stress space the classi-

cal theory with isotropic strain hardening may give very poor results.

Typically at collapse there is a very sharp change in jeformation pattern

and, consequently, a sharp turn in the stress path. Other theories have

been proposed which more adequately describe the material behavior in

such cases than does the classical theory. The Batdorf-Budiansky slip

theory (Ref. 13) is probably too cumbersome for practical application, bat

the type of theory proposed by White (Ref. 14) and Besseling (Ref. 15)

appears very promising because it is rather simple in its application, yet

it r•'ains such features as strain hardening and the Bauschinger effect.

For these reasons, it was selected for use in the STAGS code.

Introduction of inelastic behavior has been done within the frame-

work of the energy principle upon which the elastic analysis was based.

Essentiallj, the plastic deformations are considered as load terms; they

are completely analogous to thermal expansions except that they are not

known in advance. A series of :lastic problems ar- solved by the use of

energy principles in which the "load terms" are gradually modified until

they correspond to --he computed state of stress and to specified nonlinear

stress strain r~lations at all points ever the shell surface and througi the

shell thicknless.

-L;



4.2 The White-Besseling Theory

T1e •hite-Besseling Theory, as applied here, ass-nmes that the

material consists of r everal components which have idcentical elastic pro-

perties and exhibit ideal plasticity (no strain hardening) but have different

yield strength. As the strain is the same in all components, the stress-

strain curve will experience a decrease in slope as the stress reaches

the yield limit for any one of the components; the respective components

then cease to take additional load. The composite thus exhibits strain

hardening with a piecewise linear stress-strain relation. Use of only one

component will, of course, result in application of ideal plasticity theory.

If the stress is reversed after loading beyond the yield limit for one or more

components, yield will occur in the reversed direction at an average stress

in the composite which is lower than the stress for original yield. This

f . is demonstrated in the umiaxial stress-strain cu.-ve shown in Figure 5.

Tension is first applied, OAB, beyond the yield limit and followed by

strain reversal, BCD, into the zone of yield in compression. The yield

ellipse for t.ie wveakest component and the loading history in this component

are also shown in this figure. Clearly, yield in compression will occur

when the total strain is (e1 Ze), i.e., the yield in compression occurs

at a much lower stress if the material previously has been subjected to

tension stresses above the yield point. To introdace the Bauschinger

effect this way is appealing because it reflects the microstress theory

which now generally is accepted as the explanatio-i of the Bauschinger effect.

4.3 Implementation of the White-Besseling Theory in STAGS

The White-Besseling plasticity theory is implemented in the corn-

puter program in the following manner:

1) The inelastic behavior of the material is defined throagh

sp2cification of the uniaxial strcss-strain curve. This curve is piecewise

linear and the input consists of stress ard strain at each of its co, ners. The

relative volume an( the yield strength for ech of th( components is then

compated intcrnall . 'T'he' transverse strair is dc,:cermined b,;( 1 that the

I.l
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total stress in the transverse direction is zero. It seems possible to

reflect more accurately the actual stress-strain relations, including

anisotropy, if self-equilibrating initial stresses are included.

(2) The strains are estimated for all points in the shell over the

shell coordinates and through the thickness. This generally is done through

extrapolation from previous solutions.

(3) A subroutine is called within which, for each of the material

components, the stress corresponding to the assumed strains is determ.,.ned.

The total stress for the composite is then found.

'total = I I

where J is the number of components, vi is the relative volume occupied

by component number i4 vi 1.0 , and ai is the yield stress for

component number i.

(4) Once total strains and stresses are known, the plastic part

of the strain increment can be determined and added as a pseudo-load

in an elostic analy sis.

(5) New strains are computed and used as estimates. The pro-

cedure is continued until the corriputer strains agree to within a given margin

with the estimated strains.

The following operations are performed in the above referenced subroutine:

(1) Info-mation about material properties is transferred into

the subroutine together with the estimated strain increments (AC1 , Y , and

Ay) and stresses at the end of the previous load step (o1 , 2 ' ).

(2) New stresses are compt ted under the assumption that the

load step is elastic.

E
al 1 +---- (A~l v Ae2 )

CT 2 2 + E (AC2 + vAC1 ) (89)

T T ý EA\/L2 (1 + j

-43-
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(3) Set 2° + 22 (90)-0(

where k is the ellipse ratio for the assumed yield surface (usually, k 3).

2
(4) If a, is less than ay , the ioad step is elastic in this com-

ponent (loading or unloading). If this is the case for all components, there

are no psuedo loads caused by plastic strain increments and the calculations

for the load step are concluded.

2
(5) If cT is larger than ay for some component, the step is

at least partly inelastic for this component. As we have assumed ideal

plasticity the stresses can be computed from the conditions that

z 2 kz 2Z
e I + C0 -1 2+ k = 2  

(91)

where

IE a = + P - + V(66 - )F

~ E P[M 2+66 C + v(A C, A e')] (92)2 2 V 2+

T T 741 ' AVIS: T • 2(1+ v) •

and that the plastic flow is perpendicular to the yield surface

_ ;-(93)

A 2p 2T

2 ~ 2 - Y ZkT

After the stresses have been determxined in the components, the aver-ige

stress in the composite is found rea,.dly. As the el-stic constants are

the same for all components, the plastic part of the strain increinent

(i. e. the pstado loads), can easily be obtav:ed.,
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The acquired ability to handle cases with inelastic behavior

is demonstrated in one of the examples discussed in the following section.
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Section 5. 0

RESULTS OF SAMPLE CASES

In the following section are presented some numerical results

obtained through exercise of the program. The examples were chosen

such that the recent additions to the program could be verified.

5.1 Cylinder With Rectangular Cutout

Analytical and experimental results for cylindrical shells with

rectangular cutouts were reported earlier in Reference 3. The benefit

derived from the use of a variable mesh spacing has been evaluated by re-

examining this cylinder problem. The cylinder has two diametrically oppo-

site cutouts and a radius-to-thickness ratio of 400. It was reported in

Reference 3 thata reasonably accurate analysis for such cylinders would

require excessive computer time. Numerical results for a uniform f'.nite

difference net with 9 points in the axial and 20 points (9 x 20) in the circum-

ferential direction (also presented in Ref. 3) ace shown he-,e in Figure 6.

Due to improvements in the efficiency of the computer program, it is now

possible to obtain much better results even with constant grid spacing.

Curve B is obtained with a finer net (16 x2O). A finite difference mesh

was designed also in which the minimum grid spacing is identical to

that used for Curve B, but which gradually increases away from the cut-

out until it is approximately doubled. The displacements corresponding

to this analysis are practically identical to those obtained by use of grid

with constant spacing, but -he computer time is reduced by about 40%.

Curve C was determined by use of a minimum grid spacing of 0. 2

inch at the edge of the cutout. Moving away from the cutout the spacing

increases by a factor of 1. 2 from one mesh to the next until the maximum

grid size, of 0.6 inch is obtained. Flr Curve D the minimum si-'e is 0. 1?
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inch, the factor is 1. 5 and the maximum size is again 0. 6 inch. The

results obtained by use of the latter mesh appear to be in very good

agreement with the experimental results. The computer time correspond-

ing to the determination of one of these curves is approximately 0. 5 hours

(UNIVAC 1108). For analyses with even finer mesh sizes, therefore, the

analysis was restricted to loads below 845 pounds. The results in Table I

show that' additional refinement of the mesh would not substantially change

the results shown in Curve D.

Table I

Displacement w1 at P = 845 lbs

Net Min. Spacing Factor Max. Spacing w1

D (13 x 21) .12 1.5 .60 .00877

E (8 x25) .12 1.2 .60 .00850

F (21 x35) .12 1.2 .30 .00858

G (21 x28) .08 1.2 .60 .00873

5. 2 The Pinc*ied Cylinder

The case of a pinched cylinder, Figure 7, was also analyzed to

further demanstrate the, advantages of the variable grid capability. Lateral

displacements computed from a linear analysis are shown versus the cir-

cumferential coordinate in Figure 8 and versus the axial coordinate in

Figure 9. The curves are for a converged solution, corresponding to a

variable spacing grid with 17 points in the axial and 26 points in the circum-

ferential directions (17 x 26). These results are in good agreement with

results for the same case shown in Reference 16. Discrete values of the

solution are given for the two coarser nets (A and B) which are shown in

Figure 10. It can be seen that the use of the net with variable spacing,

Grid A, leads to results which are at least of the same quality as those

obtained with the uniform net, Grid B. The computer time corresponding

to the analysis with Grid B is approximately five times the time ior

analysis with Grid A.
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5.3 Cylinders With a Circular Cutout

A circular cylinder was analyzed for collapse ,nder uniform end

shortening. Its geometrical properties were: length 9 inches,

radius 6 inches, thickness 0. 06 inch. At its midlength, it had two dia-

metrically opposite circular cutouts, each of radius 2. 35 inches. Young's

modulus was set to 107 psi and Poisson's ratio to 0. 3. Due to symmetry,

only half the length and one quarter of the circumference of the shell was

considered. A finite difference net was chosen with 15 axial and 19 circum-

ferential stations (15 x 19). The net is shown in Figure 11. The analysis in-

dicates collapse (a maximum load) for an end shortening of . 0209 inch. The

load maximum is 16, 740 lbs or 66, 960 lbs for the complete cylinder.

The difference between the displacements for two adjacent solutions

close to the point of collapse represents the collapse mode for the case.

In Figure 12c is shown how these incremental displacements vary with the

angular coordinate (see Fig. 11). Figure 12b shows the lateral displace-

ment increments at the meridian 0 = 57°. The displacements at the edge

of the cutout (0 = 22. 50) and at 0 = 570 are shown as functions of the axial

load in Figure 13. While the largest displacement occurs at the cutout edge,

the displacement at 9 ± 570 is growing faster indicating that "buckling"

occars away from the cutout where the axial stresses are higher.

5.4 Shells with Elliptic Cross-Section

For an elliptic cone the geometric constants occurring in the kine-

matic relations are given as an example in Section 2.8. These expressions

were used here in an analysis of an ell{ptic cone with the dimensions shown

in Figure 14.

Numerical results were first obtained for the special case of an

elliptic cylinder with a length of 1. 0 in. , a thickness of 0. 0144 in. , and

semi-axes of 1.75 in. and 1.0 in. (sec Fig, 14). Young's modulus was 10

psi and Poisson'%, ratio was 0.3. The- cylinder was subjected to a umform

end shortening with the edges fLee to rotate but restrained from moving in

the radial a.nd ci..•cumfereniial directions.
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Since the "buckling pattern" was expected to be confined to the

aremas of least curvature, it appeared that antisyrnmetric behavior with

respect to the normal plane through p = 0 (Fig. 14) could be excluded.

Hence, the analysis was restricted to a 1800 panel with symmetry condi-

tions enforced at ; = 0 , v . A uniform finite difference grid was chosen

with U points in the axial and 29 points in the circumferential directions.

Results obtained with finer grids indicated that use of the chosen grid led

to accurate computations of the collapse load.

Due to the symmetry of the prebuckling deformation about the plane

at midlength and about the normal plane through w = r/2 , it was necessary

to excite nonsymmetric deformations by the use of small antisymmetric

imperfections. Despite the presence of these imperfections, a deformation

pattern developed at collapse which was symmetric about both of these

planes. Therefore, the continued analysis was restricted to panels cover-

ing half the cylinder length and one quarter of the circumference.

For the particular cylinder considered (aspect ratio of 1. 75), it is

possible to determine the critical load without the use of symmetric (with

respect to the geometric symmetry planes) imperfections. As the load

is increased, a very sharp maximum is found in the load displacement

curve (Figure 14). Beyond this maximum convergence cannot be obtained,

hence the post-buckling curve cannot be directly determined.

For an imperfect shell, the displacement mode which developed

at collapse for a perfect shell was used as a guide in the choice of a suitable

initial imperfection mode

w = _ sin (f) cos(6e)

Load displacement curves were computed for several different values of

the imperfection amplitude w ., The, results are shown in Figure 14.

The normal displacement at 4p= y /2 , x = L/2 is shown as a function of

the axial load in Figure 15. Fromn Figure 14 it can be seen that for a

sufficiertly large. imperfection amplituce, the first snarp maximum does
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not exist--the curve is smooth and it is possible to find equilibrium con-

figurations in the post-buckling range. After such configurations have

been found, they can be used as starting values for an analysis in which

the imperfection amplitude is gradually changed until a point is found on

the post-buckling curve for perfect shells. After such a point is found, it is

easy to establish post-buckling load displacement curves for perfect shells

(Figure 14).

After the first sharp maximum the postbuckling curve exhibits two

additional limit points which correspond to secondary buckling. The curve

was not pursued beyond the third maximum because the deformations are

then so large that the applicability of the basic equations is questionable.

Also the buckle pattern is close to the point of maximum curvature and

bifurcation into an antisymmetric mode is likely. The normal displace-

ment as a function of the circumferential arclength at x = L/2 is shown

in Figure 16. Curves are given for each of the three limit points (A, B,

C on Fig. 14).

In the neighborhood of a limit point the developing collapse or

buckle mode can be obtained as the difference between displacements for

two neighboring solutions. Such collapse modes corresponding to each of

the three points of maximum are shown in Figure 17. It can be seen that

the point of maximum deflection in these patterns moves towards the

point of maximum curvature as the end shortening increases. While the

primary buckling load is rather sensitive to imperfections, it appears that

the second maximum is not imperfection sensitive; hence, it may be suit-

able as a design limit. Results similar to these have been presented by

Kempner, et al., for oval shel]s (Refs. 17, 18). However, Kempner's

shells are not elliptic and a direct comparison is not possible.

A series of elliptic con% s was also analyzed. Like the cylinders,

the cones were loaded through uniform axial shortening. At the two ends

rotation was unrestrained but the cross section was not allowed to deform.

Four different cases (including a circular cone) were z ialyzed. The aspect

ratio of the elltp-ic cross section •'as varied but the semi-axes of the

ellipse were ,-hoscn such that the circumference was the same in all cases.,
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Young's modulus was chosen to be 107 psi and Poisson's ratio was 0. 3.

All the cones had the dimensions (see Fig. 18) t = 0.16 in., c = 16 in.,

and d = 16 in. The dimensions of the ellipse are shown in Table II.

Table II

a b

Case (in.,). (in.)

1 10.65 10.65

2 11.9 9.5

3 12.2 8.7P

4 13.0 7.4

The results for the elliptic cylinders indicate that an imperfection

with an amplihude of about one percent of the shell thickness: will not signi-

ficantly change the critical load. However, if this impelfection is included,

a less severe convergence criterion may be used. Consequently, for

economy in the analysis such an imperfection was included here. Figure 19

shows how the critical load varies with the ellipse ratio for elliptic cones

of equal weight. The decrease in buckling load with increasing aspect

ratio is less drastic than is indicated by the bifurcation buckling analysis

for o• al cylinders (Ref. 16). For the circular cone the bifurcation point

and the maximum coincide but for higher values of the aspect ratio the

critical load is above the bifurcation point. The buckling mode for Caseý 3

(a/b = 1. 4) is shown in Figure 20. Similar results were obtained in a bifur-

cation buckling analysis for oval cylinders by Kempner, et al (Ref. 16).

It must be emphasized that for all th, caies investigated here a

uniform end shortening was applied tc the shell. Had a uniiormly distri-

buted axial load been applied at both edges, the possibilities for redistri-

bution of strc -ses would have been limited and the performance of the elliptic

shells would have compared less favorably to shells with circular cross-

section.
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5. 5 A Pear-Shaped Cylinder

in Figure 21 is shown a cylinder whose cross section consists of

circular arcs joined by straight lines. The behavior of this shell subjected

to uniform end shortening was investigated with use of the STAGS code.

As this type of shell is not included among the standard geometries,

a subroutine must first be written for computation of the geometrical con-

stants. The general procedure recommended in Reference 8 for computation

of the geometrical coefficients can be greatly simplified in a case like this.

If the arclength and Lhe axial distance are chosen as surface coordinates,

clearly the Lame coefficients are A = 1, B z1 and C = 0. Also the local radii

of curvature are directly given.

As seen from Figure 22 the linear range in this case represents

less than 1/30 of the total load history of the shell. The rapid change in

slope of the load-deflection curves at about P = 100 lbs reflects the growth

in normal deflection (buckling) of the flat portions of the shell. Associated

with this growth in w is a redistribution of the axial stress so that the

curved segments begin to take up a larger portion of the total axial load P

As more and more of the axial load is borne by the curved segments, the slope

of the load-end-shortening curve increases until just before collapse, at which

load the entire structure failE. Figures 23 and 24 show the circumferential

distributions of normal outward displacement w and axial compression/length

N at the shell midleiigth for P = 2328 lbs. At this load, both w and Nx x

are growing very rapidly with P in the curved portions 45 e • ! 900 and

-67. 50 i e ! 0 0.

The rather complex behavior in this case indicates the need for a

flexible strategy for calculation of collapse loads of shells. Small load

steps and frequent refactoring of the equation system matrix are required

in the load region between 100 and 200 lbs even though the displacements

are relatively small in this range. Farther out on the load-end-shortening

curve, where the displacements are larger, rather large load steps can be,

used and few refactorings are necessary. Efficient use of the STAGS code,

or any code for prudicting nonlinear behavior of shells, requires a soph,.sti-

cated iteration strategy built into it and a well-trained user to take advantage

h -
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of this strategy.

A finite difference grid was used with 45 circumferential nodes and

9 axial nodes covering 1/2 of the circumference and 1/2 of the length. A

variable spacing was used such that the gridlines would follow the inte:-

sections be'ween flat and curved shell segments.

5. 6 Bending of Cylindrical Panels Under Point Loading

The STAGS code was applied in an analysis of the behavior of

shallow cylindrical panels as shown in Figure25. The panels were subjected

to bending through application of a point load at the midpoint of a panel sup-

ported at the curved edges and with the straight edges free. The behavior

of such shells is expected to be highly nonlinear. If the load is applied

towards the center of the circular arc, the cross-section will be more

and more shallow with application of load and the result is similar to the

well known Brazier effect. If the load is directed away f"orn the center,

the free edges will be under axial compression and the shell will collapse

under a moderate load.

Three cases were considered: one with clamped edges loaded to-

wards the center and two with simply supported edges; one loaded towards

and one loaded away from the center. Ten axial and nine circumferential

stations were used. The results, in terms of load displacement curves,

are shown in Figure 26 for the shells with load toward the center, and in

Figure 27 for the shell loaded away from the center. In the case with

clamped edges, collapse is prevented by the development of axial mem-

brane tension. Collapse in the case of simple support is indicated by

a maximum in the load deflection curve. In a case like this, i. e. , when

the load is stepwise increased rather thar a displacement, points on the

curve cannot be computed through the maximum. At the point of maximum

the equilibrium configuration is unstable and hence the coefficient matrix

has a zero determinant., This determinant, as obtained when refactoring

was required, is plotted versus the load in Figure Z8. In this case, it

is much easier to read the critical load from the determinant plot.
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5.7 Inelastic Buckling of Plate

A flat plate was considered which was simply supported on two

opposite edges and, on the other two edges, in-plane displacements were

allowed but lateral displacements and rotation were suppressed. Axial

compression was introduced in the plate at the simply supported edges.

Plate dimensions and boundary conditions are shown in Figure 29.

cl In the elastic case the bifurcation buckling theory would be appli-

cable and the value of the critical load can be obtained by use of simpler

means than a nonlinear analysis. However, application of STAGS also

gives information about the plate behavior in the post-buckling range.

The critical load for the plate can be established by use of the nonlinear

analysis if lateral displacements are triggered by small initial imperfec-

tions. As the lateral displacements grow very rapidly and if the imperfec-

tion amplitude is sufficiently small, the load-displacement curve has a

sharp knee at the buckling load as it is traditionally defined. However, the

smaller the imperfection is, the sharper must the convergence criterion be,
and the more expensive is the analysis. For very small imperfections, it

would be necessary to use double precision arithmetic. Therefore, advan-

tage was taken of the fact that buckling is followed by redistribution of

stresses. The curve corresponding to the difference between axial stress

at the edge and axial stress at the center of the plate has a much sharper

knee than the load displacement curve has and it is possible to determine

the buckling load with larger values of the imperfections.

The method was demonstrated first for a plate which was assumed

to remain elastic for any stress. A grid was used with 8 nodes along

simply supported sides and 6 nodes along the clamped sides. The ini-

tial imperfection was given by

-5 rrX
w 10 sin -r- cos

The results for the elastic plate are shown in Figure 30. The plot
2of u versus j indicates a value of a critical load of 2800 kgi cm which

is in close agreement with the result from the, classical buckling analysis

tor plates,
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The same analysis was also carried out for a 10 percent thicker

plate, both elastic znd inelastic with the stress-strain curve for uniaxial

compression represented by the polygon shown in Figure 31. The results

are shown in Figure 32 in the form of a load-displacement curve. A plot

of the square of the displacement givc-s a clearer indication of the critical

load. The critical stress is found to be 2270 kg/cm corresponding to an

e axial load of 1100 kg. The kink in the cta. ve for lateral displacement is

presumably eue to the fact that as the corn er on the load displacement curie

is reac'ied by the average stress, the bending stiffness drops with the reduc-

tion in tangent modulus.

As the form of the load displacement curve above the second corner

is in this case irrelevant, more accurate results would have been obtained

if corner points had been concentrzted in the neighborhood of the critical

stresq.
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Section 6. 0

CONCLUSIONS AND RECOMMLNDATIONS

Certain improvements or extensions of the STAGS computer pro-

gram are reported here. It appears from solutions of several sample

problems that with these extensions the STAGS computer program has

become a powerful tool for the an-ilysis of the nonlinear behavior of shells

"of general shape. The use of the energy method with finite differences

appears to be attractive. For most shells, on-. of the standard geometry

routines can be used, in which case determination of the input data general-

ly is a matter of only a few minutes. Through comparison with other pro-

grams (Ref. 19), it has been found that the program is efficient with re-

spect to computer time and to numerical stability. Likewise, the modi-

fied Newton-Raphson method appears to be the best choice for the solu-

tion of the nonlinear equation system. It has been favorably compared

to other numerical methods in Reference 20. Finally, through application

to a large number of practical cases, some with previously known solu-

tions, the validity of the program has been reasonably well established in

all its aspects. Under sponsorship of the NASA Manned Spacecraft Center

in Houston, a series of tests of cylinders with cutouts has been carried out

and results have been compared to analytical results from STAGS. The

agreement between test results and analytical predictions is very good

(Ref. 21).

In view of the successful application of the program, it appears

desirable that further extensions be mede For instance, it would erha'ice

the value of the program if the follw-ing itrms were included.

in~prnvcd inp-t a.nd output, particularly ex:-ar..cd

r.-Lt -i&.:i2:'.ty,":-. "a : cra~:;;.", : .Cispla,. of the-

-- -.' - "-" J . .DY C.7 • .



I
Further improvement in program efficiency.

Input diagnostic.

Pre- and post-processors of data files.

Inclusion of some finite elements m the program

such as ba.-s and beams, which cannot be properly

represented in the present program. Stch a hybrid

program would combine the efficiency of the finite

difference analysis with the versatility of the finite

element analysis.
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